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" FAN V/STOL AIRCRAFT 

By M. 0. McKinney and W. A. Newsom 
NASA Langley Research Center 

SUMMARY 

This paper points  out some of the fundamental charac te r i s t ics  of fan- 

powered V/STOL a i r c r a f t  and demonstrates with various t e s t  data how these 

fundamental cha rac t e r i s t i c s  show up i n  the cha rac t e r i s t i c s  of various pa r t i cu la r  

configurations. Since most of t he  experience with fan-powered V/STOL configu- 

ra t ions  has been gained i n  wind tunnels, the emphasis i n  the  paper i s  on aero- 

dynamics although some operational data from f l i g h t  tes ts  a re  presented. 

INTRODUCTION 

There have been severa l  fan-powered V/STOL a i r c r a f t  bu i l t  and a consid- 

erably l a r g e r  number of fan-powered V/STOL a i r c r a f t  configurations have been 

t e s t e d  i n  wind tunnels; but  the  experimental work has not been systematic 

enough, and the theo re t i ca l  work has not been complete enough t o  permit deter-  

mination of t h e  cha rac t e r i s t i c s  of a rb i t r a ry  configurations. 

present paper i s  t o  provide an a i d  f o r  the understanding of t he  aerodynamic 

cha rac t e r i s t i c s  of such a i r c r a f t  by pointing out some of the  fundamental char- 

a c t e r i s t i c s  of such a i r c r a f t  and demonstrating with various tes t  data how these 

fundamental cha rac t e r i s t i c s  show up i n  the cha rac t e r i s t i c s  of pa r t i cu la r  con- 

f igura t ions  as observed i n  wind-tunnel and f l i g h t  t e s t s .  Since t h e  wind-tunnel 

experience i s  much greater  than the f l i g h t  experience, the main emphasis w i l l  be 

on c h a r a c t e r i s t i c s  observed i n  wind-tunnel tests. 

The purpose of t he  

The fundamental cha rac t e r i s t i c s  of fan-powered V/STOL a i r c r a f t  w i l l  be 

discussed as they apply t o  t h e  three general configurations present ly  under 
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consideration. These three  general  configurations a r e  sham in  f igu re  1. 

They are: 

VTOL l i f t  and remain e s sen t i a l ly  horizontal  throughout the  f l i g h t  range, 

(1) the  l i f t - f a n  configuration i n  which the  fans are used only f o r  

(2)  the t i l t i ng - fan  configuration i n  which the fans tilt 90' as the t r a n s i t i o n  

i s  made from hovering t o  conventional forward f l i gh t ,  and ( 3 )  t h e  vectored- 

th rus t  configuration i n  which the  fans remain i n  t h e  c ru ise- f l igh t  pos i t ion  at 

a l l  t i m e s  and t h e i r  e f f lux  i s  def lected downward t o  provide d i r e c t  lift f o r  

VTOL operation. 

w i l l  be discussed f o r  the  hovering, t rans i t ion ,  and c ru i se  f l i gh t  conditions. 

The charac te r i s t ics  are not discussed i n  quant i ta t ive  terms, but  r a the r  i n  

The aerodynamic and operating cha rac t e r i s t i c s  of such a i r c r a f t  

qua l i t a t ive  terms t h a t  apply t o  fan-powered a i r c r a f t  f o r  a wide va r i e ty  of 

disk loadings ranging from those associated w i t h  high-pressure-ratio l i f t  and 

cru ise  fans t o  those associated with ducted propel lers .  

HOVERING 

Character is t ics  of Fans 

One Of t he  fundamental cha rac t e r i s t i c s  of ducted fans, as i l l u s t r a t e d  i n  

figure 2, i s  t h a t  they experience a high drag i n  a s ide  wind. This character-  

i s t i c  results f romthe  f a c t  t h a t  when such a fan moves horizontal ly ,  or  i s  

exposed t o  a horizontal  gust, it turns  the air  90° down through the fan.  

therefore  experiences a drag which i s  equal t o  the mass flow of air  through 

the fan per second times the ve loc i ty  of t he  r e l a t i v e  wind. 

greater  than t h a t  of a f r e e  propel le r  o r  r o t o r  s ince the  air can go through the  

It 

T h i s  drag i s  much 

free propel ler  a t  a s m a l l  angle and does not have t o  t u r n  90'. 

i s t i c  of a high drag i n  s ide  winds r e s u l t s  i n  a i r c r a f t  powered by such fans 

being more responsive t o  s ide  gusts  and a l s o  requir ing g rea t e r  tilt angles of 

T h i s  character-  
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the fan t o  achieve a given airspeed. 

placed f romthe  center of gravity, as, f o r  example, i n  the case of a configura- 

t i on  such as configuration 3 of f igure  1, the force normal t o  the i n l e t  can 

produce a s izable  moment - f o r  example, a yawing moment i n  response t o  a s ide 

gust f o r  configuration 3 .  

If the  i n l e t  of such fans i s  much dis- 

Another fundamental charac te r i s t ic  of ducted fans, a s  i l l u s t r a t e d  i n  f i g -  

ure 3, i s  t h a t  when they are  exposed t o  a side wind they develop large moments. 

These moments r e s u l t  mainly from the f a c t  t h a t  the  fans develop more l i f t  on 

the upwind l i p  of the duct than on t h e  downwind l i p  of the duct. The moment of 

a ducted fan i s  much greater  than t h a t  of a f r e e  propeller capable of producing 

the same th rus t  per horsepower as i l l u s t r a t ed  by the t e s t  data a t  the  bottom of 

f igure 3 .  When such fans a re  i n  a horizontal posi t ion f o r  hovering f l i g h t ,  as 

i n  the  case of configurations such as configurations 1 and 2 of f igure 1, th is  

moment i s  the  pr incipal  cause of unstable osc i l la t ions  such as those shown i n  

f igure 4. 

models of t he  XV-5A and X-22A airplanes of references 1 and 2 and i n  the t e s t s  

of other ducted fan models reported i n  references 3 t o  7. 

o sc i l l a t ions  do not seem t o  be trotiblesome i n  the  fu l l - sca le  a i r c r a f t ,  however, 

because the period of the  osc i l l a t ion  i s  so long t h a t  the p i l o t  never sees any- 

thing but t he  i n i t i a l  motion which appears as a dihedral  e f fec t .  

Such an unstable osc i l la t ion  was experienced i n  t e s t s  of f ree- f l igh t  

These unstable 

Ground Effects 

The fundamental charac te r i s t ics  o f  the exhaust flows of fan-powered VTOL 

a i r c r a f t  i n  hovering f l i gh t  i n  ground effect  a r e  shown i n  f igure 7.  

flows r e s u l t  i n  ground effects  on l i f t  and on problems related t o  the  recircu- 

l a t i o n  of t he  sl ipstream through the  fans. 

pecul iar  t o  fan-powered a i r c r a f t ,  but a r e  experienced i n  some form with most 

These 

These charac te r i s t ics  a r e  not 
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types of VTOL a i r c r a f t .  

fan eff lux exhausts near the center  of the a i r c r a f t  it ent ra ins  air under the  

a i r c r a f t  as i t  flows outward along the  ground and t h a t  t h i s  pumping of air from 

beneath the a i r c r a f t  causes low pressure under the a i r c r a f t  and consequently 

causes a suck-dawn e f f e c t  on t h e  airframe. This download results i n  an unfavor- 

able  ground effect on l i f t ;  and, i f  it i s  unsynmetrical, it can result i n  a 

va r i a t ion  of  pi tching moment with height above the  ground. 

p i tch ing  moment was qui te  noticeable t o  p i l o t s  of the  XV-5A fan-in-wing a i r c r a f t  

although they could e a s i l y  l ea rn  t o  an t i c ipa t e  and compensate f o r  t h i s  e f f e c t .  

If the l i f t i n g  fans a re  spread out i n  the airframe, t h e  s i t ua t ion  i s  t h a t  

The sketch at  the  top of f igure 5 shows tha t  if the  

A ground-induced 

shown i n  t h e  lower sketch of f igu re  5. 

upward flowing fountain of air  between the  fans.  If there  i s  no airframe 

between the fans t o  prevent t h i s  upflow, the  upflow forms a powerful mechanism 

f o r  sl ipstream rec i rcu la t ion  and the  ingestion of debris by the  fans.  

f luctuations in  t h i s  rec i rcu la t ing  s l ipstream can cause e r r a t i c  aerodynamic 

disturbances t o  t he  a i r c r a f t  when it i s  hovering near the ground. Such disturb- 

ances are reported i n  the discussion of f r ee - f l i gh t  model tes ts  of t he  X-22A 

a i r c r a f t  i n  reference 2. If there  i s  a subs t an t i a l  amount of airframe between 

the  fans t o  block the  upward flow of the  slipstream, t h i s  upflow causes a posi-  

t i v e  pressure beneath the airframe which r e s u l t s  i n  a favorable ground e f f e c t  

on lift and a l s o  i n  pi tching moments if t h e  system i s  unsymmetrical. 

ground e f f e c t s  were experienced i n  fu l l - sca le  f l i g h t  tes ts  of t he  XV-5A a i r c r a f t  

and i n  model t e s t s  of both the  XV-5A and X-22A a i r c r a f t  (see refs. 1 and 2 ) .  

In  t h e  f l i g h t  t e s t s  of the XV-5A a i r c r a f t  it w a s  noted that the  ground e f f e c t  

from the  upward-flowing column Of air  between the  fans was quite subject  t o  

ground winds and a i r c r a f t  tilt angles. 

The e f f lux  of t he  fans tends t o  form an 

Random 

Such 

It seemed t h a t  it w a s  qu i t e  easy f o r  
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- the  upflow t o  be deflected enough t o  get out from under the fuselage so tha t  

the favorable ground cushion ef fec t  would be l o s t .  

The foregoing items a re  a l l  e f fec ts  on the  a i r c r a f t .  There has been much 

speculation over the years about the effects  of the  a i r c r a f t  on the ground f o r  

high-disk-loading a i r c r a f t  such as those powered w i t h  l i f t  fans. This is  a 

very d1ffTcld-b area f o r  whir5 $2 se t  zp meIl-,lngf;;l eqe r i iwn t s ,  h t  cboiit a 

year ago some r e a l  operational experience w a s  gained with the XV-5A a i r c r a f t  

which i s  powered with fans having a pressure r a t i o  of about 1.1, o r  a disk 

loading of about 370 pounds per square foot. The a i r c r a f t  was operated from 

various unprepared surfaces. 

from cul t ivated f i e l d s  and dry, hard, re la t ive ly  bare deser t  areas.  These 

Perhaps the most c r i t i c a l  t e s t s  were operation 

t e s t s  showed no damage t o  the  ear th  of t he  cul t ivated f i e l d s .  They a l so  showed 

t h a t  the  dust cloud created i n  operation from the dry deser t  surface was much 

l e s s  dense and l e s s  extensive than had been commonly supposed. The p i l o t  had 

no great  d i f f i c u l t y  i n  seeing su f f i c i en t ly  well t o  make take-offs and landings 

from the dry, dusty surface. In  another t e s t ,  the  a i r c r a f t  was operated, along 

w i t h  a hel icopter  of about the same gross weight, from a s i t e  i n  close proximity 

t o  t e n t s  and parked vehicles without damaging the t en t s  o r  vehicles. In  f ac t ,  

the  XV-5A l i f t - f a n  a i r c r a f t  seemed t o  cause l e s s  disturbance t o  the surrounding 

objects than d id  the helicopter.  This l a t t e r  r e s u l t  i s  i n  agreement with the  

analysis  of t h e  problem of slipstream ef fec ts  on surrounding objects presented 

i n  reference 8. 

TRANSITION 

The main point t o  be t rea ted  i n  t h e  t rans i t ion  range i s  the var ia t ion of 

l i f t  with forward speed. This fac tor  is  of great importance because it 
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determines the  STOL capabi l i ty  of t h e  a i r c r a f t ,  i t s  engine out safety,  and i t s  * 

I duct, it has greater  t h r u s t  because of t he  improved conditions under which it 

efficiency during protracted operation i n  the  t r a n s i t i o n  speed range as m i g h t  

be required by t r a f f i c  procedures, pa r t i cu la r ly  under instrument conditions. 

I operates.  This e f f ec t  of t h e  proximity of t h e  face of the fan t o  the  l i p  of t he  

The var ia t ion of l i f t  with airspeed i s  made up of two fac tors :  

t i o n  of the th rus t  of the fans themselves, and (2 )  the n r j a t i o n  of the  l i f t  

(1) the  var ia-  

induced by the  fans on the  airframe. 

Thrust of Fans 

The var ia t ion of t he  thrust of the fans with airspeed i s  i l l u s t r a t e d  i n  

figure 6. In order t o  provide some or ien ta t ion  on the  sca le  of veloci ty  r a t i o  

i n  t h i s  and subsequent f igures ,  it might be noted tha t  a ve loc i ty  r a t i o  of about 

0.5 represents approximately the  speed a t  which a l i f t  or  c ru ise  fan-powered 

V/STOL airplane could complete the t r a n s i t i o n  and become completely wing sup- 

ported. 

duct shows the  expected increase with increasing speed, but tha t  the t h r u s t  of a 

The data of f igure  6 show tha t  the thrust  of a fan  located deep i n  a 

fan  of a fan-in-wing configuration decreases w i t h  increasing speed. 

i n  thrust ,  as explained i n  reference 9, results from the f a c t  tha t  the  pressure 

This l o s s  

recovery i s  low and the d i s to r t ion  grea t  a t  a s t a t i o n  near the l i p  of a duct 

operating i n  a cross  flow, whereas both the pressure recovery and d i s t o r t i o n  a r e  

improved f a r the r  down i n  the  duct. 

fan must be near the l i p  of the duct, i t s  performance su f fe r s  from low pressure 

Since i n  a fan-in-wing configuration, the  

recovery and high d is tor t ion ;  whereas, when the  fan i s  located far down i n  the  

i n l e t  i s  not pecul iar  t o  l i f t  fans; it has a l s o  been observed i n  r e l a t i o n  t o  

i n l e t s  for  l i f t i n g  turboje t  engines as noted i n  reference 10. Recently some 

tes ts  have been run i n  t he  Ames 40- by 80-foot tunnel  i n  which boundary-layer 



control w a s  applied t o  the i n l e t  of a l i f t  fan i n  an attempt t o  improve the 

i n l e t  performance and thereby prevent the  loss in thrus t  with increasing speed 

shown i n  f igure 6 f o r  the  fan-in-wing configuration. These data have not been 

completely worked up o r  analyzed, but they show that the use of BLC on the for-  

w a r d  l i p  of the i n l e t  s ign i f icant ly  increased the thrus t  of the fan i n  the 

t r ans i t i on  speed range - even when allowance w a s  made f o r  the engine bleed a i r  

required f o r  BLC. 

L i f t  Induced on Airframe 

The foregoing discussion deals with the charac te r i s t ics  of the fan i t s e l f .  

Now, however, l e t  us examine the e f fec t  of the fan  on the surrounding airframe. 

This i s  a much more complicated subject.  F i r s t ,  the  flow f i e l d  induced by the 

fans w i l l  be i l l u s t r a t ed ;  and then it will be shown that the e f f ec t s  of chord- 

wise locat ion of the fans a re  ju s t  those tha t  would be expected from t h i s  flow 

f i e l d  f o r  a wide var ie ty  of fan-powered configurations. Next, the drag of the 

fans w i l l  be discussed, and the e f fec ts  on l i f t  of vectoring the fan exhaust 

w i l l  be i l l u s t r a t e d .  And, f ina l ly ,  it w i l l  be shown tha t  the span of the 

powered-lift system has a major e f fec t  on the eff ic iency of f l i g h t  i n  the 

t r ans i t i on  range ju s t  as the span of a wing does i n  conventional cruis ing 

fl ight.  

Flow f i e l d  induced by fan.-  Figure 7 shows the  e f f ec t  of a l i f t  fan on the 

airflow around it. 

of any l i f t i n g  system i n  forward f l i g h t .  

and a downwash behind it. 

causes a download on any surface behind the wing. The upwash ahead of the fan  

causes lift on the portion of the wing, or fa i r ing ,  ahead of the fan. It a l so  

c rea tes  a download on the  upper surface of t i e  wing i m e 6 i t i k i y  'oeiiiiia tiit: fttli 

The fan i s  a l i f t i n g  system and has a l l  the normal e f f ec t s  

It creates  an upwash ahead of the fan 

The downwash created behind the wing, or  fan  fair ing,  
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and causes a download on the e n t i r e  lower surface behind the fan.  This type of 

induced load on the  wing i s  shown by the  experimentally determined pressure 

d i s t r ibu t ion  at the  bottom of f igure 7, which w a s  taken from reference 11. The 

next four  f igures  ( f ig s .  8 t o  11) w i l l  show the lift cha rac t e r i s t i c s  Of several  

representat ive fan-powered V/STOL configurations t o  show tha t  they vary w i t h  

configuration as might be expected on the  basis of the  type of a i r f low pa t t e rn  

shown i n  f igure  7. A l l  of these da ta  a re  f o r  the  case i n  which the  airframe i s  

at 0' angle of a t tack  with f l a p  up and the fan e f f lux  i s  a t  right angles t o  the 

airs tream. 

Effect of chordwise locat ion of fans on l i f t . -  The e f f ec t s  of t he  foregoing 

type of f l o w  and pressure d i s t r ibu t ion  a re  shown i n  figure 8 f o r  a configuration 

with a fold-out l i f t  fan  located i n  a f a i r i n g  ahead of the  wing. 

were taken from reference 12. 

t h e  fan, the fa i r ing ,  and the  wing with forward speed. The data  show a reduc- 

t i o n  i n  f a n  t h r u s t  w i t h  increasing speed such as t h a t  i l l u s t r a t e d  f o r  a fan-in- 

wing configuration i n  connection w i t h  f igure 6. 

i s  a large induced l i f t  on t h e  f a i r i n g  around the  fan. They a l s o  show t h a t  t he  

downwash from the  fan causes a considerable download on the  wing behind t h e  fan 

so t h a t  the t o t a l  l i f t  i s  considerably less than t h a t  of t he  fan and f a i r ing .  

It should be noted tha t  l i f t  on the f a i r i n g  i s  l i f t  i n  addi t ion  t o  the familiar 

suction on t h e  l i p  of t he  duct of the ducted fan. 

These data  

This f igu re  shows the  var ia t ion  of t he  l i f t  of 

The data a l s o  show t h a t  there 

This l i f t  on the  l i p  of t he  

duct w a s  measured as pa r t  of the fan  thrust s ince t h e  f an  t h r u s t  w a s  measured by 

pressure survey of the  fan e x i t .  This induced l i f t  on the  f a i r i n g  i s  t o  be 

expected from the upwash induced by the  fan and can be calculated by the theory 

of reference 9. 

l i f t - f a n  configurations. 

This theory i s  qui te  usefu l  i n  analyzing the performance Of 

It i s  not, however, the  kind of theory i n  which the 
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unin i t ia ted  can i n s e r t  numbers and get  t h e  cor rec t  answer. 

theory requires experience and background with l i f t - f a n  aerodynamics fo r  suc- 

cessful  application. 

of data by the  properly ski l led aerodynamicist. 

The use of t h i s  

Nevertheless, it i s  a very useful t o o l  f o r  extrapolat ion 

Figure 9 shows t h e  e f fec t  of the fan-induced flow ( tha t  is ,  of t h e  type of 

flow discussed i n  connection with f i g .  7) on the l i f t  of fan-in-wing configu- 

ra t ions  with t h e  fans located at v a r i m s  posit ions i n  t h e  wing root .  

e f f ec t s  a re  d i f fe ren t ,  depending on the  chordwise locat ion of t h e  fans as might 

be expected f r o m t h e  flow f i e l d  described in  f igure  7. 

i n  the  f r o n t  posi t ion there  i s  a loss  i n . l i f t  with increasing airspeed because 

of the la rge  a rea  behind the fans on which the suction pressures on t h e  lower 

surface can a c t .  With the fans i n  the rear loca t ion  there  i s  a decided increase 

i n  l i f t  w i t h  increasing airspeed because of t he  l a rge  area ahead of t he  fan on 

which t h e  fan-induced upwash can cause l i f t .  In  t h i s  r ea r  posit ion,  t he  fan i s  

ac t ing  i n  t h e  same manner as a je t  f l a p  (see r e f .  13) .  With both the  f ron t  and 

rear rans, the re  i s  a smaller increase i n  l i f t  with increasing speed. The data  

f o r  these th ree  configurations were taken from reference 1 2  which summarizes 

the cha rac t e r i s t i c s  of such configurations i n  more detail .  

a l s o  show t h a t  with a fan i n  a midchord posit ion there  i s  a small increase i n  

l i f t  with increasing airspeed ind ica t ing  t h a t  f o r  such a configuration the  fan- 

induced upload on the forward pa r t  of t h e  wing i s  greater than the  combined 

losses  due t o  the download on the  rear o f t h e  wing and the  reduction i n  fan 

The 

With t h e  fans located 

The data of f igure  9 

t h r u s t  with increasing speed. 

Additional da ta  i l l u s t r a t i n g  t h e  e f fec t  of the chordwise pos i t ion  of t h e  

fans i n  t h e  wing are presented i n  f igu re  10 f o r  a qui te  d i f f e ren t  configuration. 

ynis con~iguratlon has six fans spr-ead &Ioiig A I - -  ---- -0 4-I-- - - 3 - -  -".A +LA b1lC apa.11 VI U l l C  W s l l g ,  O-LIU "IIL 
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inboard and center  fans could be located at  e i t h e r  of two chordwise s t a t ions .  

The data  show that the  increase of l i f t  with increasing forward speed w a s  s ig-  

n i f i can t ly  g rea t e r  when the  fans were i n  the rearward pos i t ion  than when they 

were i n  the forward posi t ion.  

The same type of r e s u l t  i s  shown i n  figure 11 f o r  another qui te  d i f f e ren t  

configuration - an integrated fan-wing configuration i n  which the fan e f f lux  i s  

exhausted through a s l o t  nozzle across the  e n t i r e  span of the wing. The model 

was t e s t ed  with the fan e f f lux  nozzle a t  various chordwise posit ions,  two of 

which are shown i n  the f igure.  

exhausted on t h e  upper surface of the  wing and turned downward around t h e  

t r a i l i n g  edge of t he  wing. The data  of f igure  11 show t h a t  w i t h  the  fan efflux 

nozzle at the t r a i l i n g  edge of t he  wing, there  w a s  a la rge  increase i n  l i f t  

with increasing airspeed. There w a s ,  however, a large nose-down pi tching 

moment which might be d i f f i c u l t  t o  trim. This pitching-moment problem i s  the  

reason for i n t e r e s t  i n  t h e  more forward fan e x i t  locat ions which would not be 

expected t o  give as much induced l i f t  on the wing. 

fan nozzle locat ion shows the  expected r e s u l t .  

zero, bu t  there i s  a smaller increase i n  l i f t  w i t h  increasing airspeed. 

data  of figures 8 t o  11 therefore  show the  type of aerodynamic results tha t  

would be expected on the  basis of the  flow pa t t e rn  induced by the  fan, which i s  

shown i n  figure 7. 

In  a l l  cases there  w a s  a t h i n  j e t  sheet of a i r  

The data f o r  t he  forward 

The pi tching moment i s  almost 

The 

Effect of drag of fans on l i f t . -  The drag cha rac t e r i s t i c s  of l i f t  fans  a re  

i l l u s t r a t e d  i n  f igure 12 which shows a l a rge  increase i n  drag w i t h  increasing 

airspeed. 

brought out i n  connection w i t h  hove r ing , f l i gh t .  

the  f igure were taken from reference 9 f o r  a fan-in-wing configuration. 

This i s  an extension of t he  c h a r a c t e r i s t i c  of high drag i n  side winds 

The drag data at  the  bottom of 

They 

- 10 - 



show tha t ,  w i t h  0' vectoring of t h e  fan exhaust, t he  drag increases rap id ly  

w i t h  increasing airspeed. This drag can be calculated f a i r l y  accurately by the  

- expression 

D = mV 

which assumes t h a t  the  air f low i s  turned 90' t o  flow d i r e c t l y  along the fan 

axis as it goes tlii-gsh the  fa. The data of f igure  12 a l s o  show t h a t  t he  fan 

efflux can be vectored by louvers beneath the fan t o  produce zero drag over t he  

e n t i r e  t r ans i t i on  speed range. This vectoring causes some loss  i n  l i f t ,  how- 

ever, as m i g h t  be suspected. 

Figure 13 shows the  var ia t ion of l i f t  with airspeed f o r  t h e  conditions of 

zero th rus t  vectoring and f o r  t he  case vectoring t o  give zero drag, o r  zero 

longi tudinal  accelerat ion.  

increasing airspeed i s  considerably lower f o r  the case i n  which the  fan exhaust 

w a s  vectored f o r  drag t r i m .  This loss i n  l i f t  with exhaust vectoring i s  the  

result l a rge ly  of two factors :  

th rus t ,  and (2 )  a reduced fan-induced l i f t  on the  wing. 

induced l i f t  on the  wing i s  t h e  r e s u l t  that  would be expected from j e t - f l ap  

aerodynamic theory (ref.  13). 

These data show t h a t  the increase i n  l i f t  with 

(1) a loss  i n  the v e r t i c a l  component of fan 

This reduction i n  fan- 

Effect  of span on efficiency.-  So f a r  i n  t h i s  discussion the  i l l u s t r a t i o n s  

have been given i n  terms of the lift that can be produced w i t h  a given power, 

ac tua l ly  with a given fan ro t a t iona l  speed. Sometimes it i s  helpful,  however, 

t o  look at t h e  problem t h e  other way around; t h a t  is, i n  terms of t he  power, o r  

th rus t ,  required t o  produce a given l i f t .  

The e f f e c t  of span on the  efficiency of f l i g h t  i n  the t r ans i t i on  speed range 

i s  i l l u s t r a t e d  i n  figures 14 and 15. Figure 14 shows the var ia t ion of t h r u s t  

- 11 - 



required with airspeed as calculated by the  c l a s s i ca l  induced drag equation 

More exact thrust-required curves, and ones which would converge on 

Treqld/W = 1.0 a t  V = 0, can be calculated e a s i l y  from the  nomograph of re f -  

erence 14. 

order t o  i l l u s t r a t e  t h e  e f fec t  of span i n  terms familiar t o  the  airplane aero- 

dynamicist. Curves a r e  shown f o r  two aspect r a t i o s  t o  i l l u s t r a t e  the  w e l l -  

known fact t h a t  more th rus t  i s  required t o  f l y  with a low-aspect-ratio 

configuration than with a high-aspect-ratio configuration - par t i cu la r ly  a t  

low speeds, o r  h igh - l i f t  coef f ic ien ts .  It w a s  f i r s t  pointed out i n  r e fe r -  

ence 15 that  t h i s  i s  t rue  f o r  cases i n  which l i f t  i s  produced by power j u s t  as 

it i s  f o r  conventional wing-borne f l i g h t .  This reference paper points  out  t h a t  

because of t h i s  f a c t  it i s  desirable  t o  have the  l i f t  due t o  t h r u s t  spread out 

as widely and as uniformly as possible  across  as large a span as possible  i n  

order t o  achieve high l i f t i n g  e f f ic iency  or high STOL capabi l i ty  i n  the  t r a n s i -  

t i o n  speed range. Figure 15 shows an i l l u s t r a t i o n  of t h i s  point.  

The foregoing induced drag r e l a t ion  i s  used herein, however, i n  

Figure 15 shows how several  fan-powered V/STOL configurations f i t  i n  with 

t h i s  concept of t he  importance of the  span of t h e  powered l i f t  system. The 

calculated induced-thrust-required curves from f igure  14  are repeated f o r  

reference, and t e s t  data  a re  shown f o r  four  d i f f e ren t  configurations.  Two Of 

these configurations a r e  fan-in-wing configurations and have aspect r a t i o  

3.5 wings with a r a t i o  of t o t a l  fan  area t o  wing area of about 0.10. 

case two large fans are located i n  t h e  wing roots  (configuration 1 of re f .  11); 

whereas, i n t h e  other case, s i x  smaller fans  a r e  spread across the e n t i r e  span 

of t he  wing. 

I n  one 

(These l a t t e r  data have not ye t  been published.)  A t h i r d  



. configuration i s  a j e t - f l ap  configuration i n  which t h e  fan  e f f lux  is  spread i n  

a j e t  sheet uniformly along t h e  e n t i r e  t r a i l i n g  edge of t he  wing ;  t he  thrust- 

required curve f o r  t h i s  configuration is  based on experimental data  from ref- 

erence 13. The four th  configuration i s  the deflected-slipstream configuration 

of reference 16 where the  efflux from four d i sc re t e  fans i s  spread across the  

eatire s9a-n- at. the t r a i l i n g  edge of the wing by an appl icat ion of t he  ex terna l  

flow j e t - f l ap  pr inc ip le  of reference l3 t o  give an a;?proxivation of t he  uniform 

sheet j e t  f l ap .  The r a t i o  of t o t a l  fan area t o  wing area f o r  t h i s  configuration 

i s  about t he  same as t h a t  f o r  the fan-in-wing configurations - 0.10. Both of 

the  Je t - f lap  configurations have wings of aspect r a t i o  7.0. A l l  of t h e  da ta  

shown a re  f o r  flaps-down conditions; and the f l a p  angles o r  fan louver angles 

are those required f o r  D = 0, o r  zero longitudinal acceleration, a t  each air-  

speed. The thrust-required values a r e  f o r  gross thrus t ,  t h a t  is, the  momentum 

of the  fan e f f lux .  In  t h i s  respect t he  data f o r  t he  deflected-slipstream con- 

f igura t ion  are d i f fe ren t  from those of reference 16 where the  data  i n  f igure  6 

of t h a t  reference are f o r  ne t  t h rus t  required. 

Figure 15 i s  a very "busy" f igure  and illustrates a number of points  some 

of which relate d i r e c t l y  t o  the  o r ig ina l  purpose of showing the  importance of 

t h e  span of t h e  powered lift system and some of which do not.  F i r s t ,  it shows 

t h a t  the  thrust-required curves f o r  t h e  aspect r a t i o  7.0 configurations, which 

a re  a l s o  the  deflected-slipstream and j e t - f l ap  configurations, are much lower 

than those of t he  aspect r a t i o  3.5 configurations, which are the  fan-in-wing 

configurations.  The da ta  a l so  show the importance of having the powered l i f t  

spread evenly across t h e  span, s ince the  six-fan configuration requires l e s s  

t h r u s t  than the  two-fan configuration f o r  f l i g h t  at a given airspeed; and the  

j e t - f l a p  configuration requires l e s s  t h r u s t  t i a n  ihe & ~ ~ C ~ ~ ~ - S I ~ ~ C ~ Y E Z E  
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configuration. 

f o r  t he  je t - f lap  and deflected-slipstream configurations a r e  of the same general  

magnitude as the calculated induced-thrust-required curves, whereas those f o r  the  

fan-in-wing configurations a re  much higher than the  calculated induced-thrust- 

required curves. The f a c t  t h a t  the  experimental da ta  f o r  the fan-in-wing con- 

f igurat ions are so much higher than the  induced-thrust-required curve can prob- 

ably be a t t r i bu ted  t o  two fac tors :  

of the wing ahead of the  fans where they can induce l i f t  on it as compared with 

the  case of the e n t i r e  wing being ahead of the downwardly d i rec ted  j e t  sheet fo r  

the two configurations at t h e  bottom of f igure  15, and (2 )  possibly due t o  

i n t e r n a l  losses i n  the  fan  caused by vectoring the fan t h r u s t  f o r  forward pro- 

pulsion. One f i n a l  point t h a t  might be made i n  the  way of explanation of f i g -  

ure 15 i s  t h a t  t he  f a c t  t h a t  the  t e s t  data  f o r  the j e t - f l ap  configuration a re  

below t h e  calculated value can be a t t r i b u t e d  t o  the t h r u s t  recovery phenomenon 

which is  discussed i n  reference 13. 

The data of f igure  15 a l so  show tha t  the  thrust-required curves 

(1) the f a c t  t h a t  there  i s  only a small p a r t  

. 

S t a b i l i t y  

The l a s t  two points  t o  be made f o r  the t r a n s i t i o n  speed range dea l  with 

s t a b i l i t y  and t r i m .  

speed i n  the t r a n s i t i o n  speed range f o r  severa l  fan-powered V/STOL configura- 

Figure 16 shows the  va r i a t ion  of p i tch ing  moment with air- 

t ions .  These data show t h a t  the deflected-slipstream configuration has a very 

la rge  nose-down pi tching moment such as t h a t  normally as toc ia ted  w i t h  j e t -  

f l a p  configurations. 

u ra t ion  and should be corrected by changes i n  configurat ion from t h a t  used i n  

reference 16. The data  f o r  t he  two fan-in-wing configurat ions show the  increase 

This cha rac t e r i s t i c  i s  a ser ious  drawback t o  t h i s  config- 

i n  nose-up pitching moment with increasing airspeed which i s  t y p i c a l  of such 

configurations. This cha rac t e r i s t i c  r e s u l t s  p r i n c i p a l l y  from th ree  sources: 
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(1) the pi tching moment of the  ducted fan i t s e l f  which w a s  discussed i n  connec- 

t i o n  with f igure 3, (2)  the  suction pressures induced by the  fan on the lower 

surface of the  wing behind the fan, and ( 3 )  the  l i f t  induced by the f an  on the  

forward pa r t  of the wing. 

small var ia t ions of pi tching moment w i t h  speed because the thrust  and vectoring 

The l i f t -plus-cruise-fan configuration had r e l a t i v e l y  

uI rr-P t h e  fomard and rearward fans could be controlled separately t o  provide 

forward propulsion and, a t  the  same t i m e ,  t r i m  out t he  pi tching moments. 

Figure 17 shows that a l l  th ree  of the  sample configurations were direc-  

t i o n a l l y  unstable a t  low airspeeds.  This cha rac t e r i s t i c  may not be fundamental 

t o  a l l  fan-powered configurations, but it is  fundamental t o  configurations such 

as the  deflected-slipstream configuration where the  fan i n l e t s  are  a l l  ahead 

of t he  center  of gravi ty .  

causes a l a t e r a l  force a t  the i n l e t  i n  the same manner that  forward speed 

causes drag a t  the  i n l e t  of a fan such a s  t ha t  shown i n  figure 12. This l a t e r a l  

force due t o  s i d e s l i p  applied ahead of the center  of grav i ty  causes the config- 

ura t ion  t o  be d i r ec t iona l ly  unstable u n t i l  the  airspeed becomes s u f f i c i e n t l y  

high f o r  t he  s t a b i l i z i n g  contribution of the t a i l  t o  o f f se t  the des tab i l iz ing  

e f f ec t  of t h e  forward fan i n l e t s .  

When such an a i r c r a f t  i s  sideslipped, the s i d e s l i p  

CRUISE 

A i rc ra f t  powered by high-disk-loading l i f t  fans  o r  c ru ise  fans a r e  not  

expected t o  have any spec ia l  problems i n  conventional wing-borne f l ight  condi- 

t i ons  s ince i n  t h i s  condition they have been converted t o  e f f ec t ive ly  conven- 

t i o n a l  a i r c r a f t .  

e f f e c t  ducted propel le rs  w i l l  have some spec ia l  cha rac t e r i s t i c s  or problems i n  

Aircraf t  powered by lower disk loading fans which a r e  i n  
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c ru i se  f l i gh t ,  however, as a result of the charac te r i s t ics  of t he i r  fans - as 

i l l u s t r a t e d  i n  t h e  following paragraphs. 

Performance 

Figure 18 i l l u s t r a t e s  the problem of higher-than-normal induced drag f o r  

tandem-fan configurations which r e s u l t s  from configuration fea tures  required by 

considerations of longi tudinal  s t a b i l i t y  and t rh .  

t ions ,  the  center  of gravi ty  must be located about midway between the  forward 

and rearward ducts from considerations of p i t ch  t r i m  i n  hovering f l i g h t .  When 

the  center  of gravi ty  i s  i n  t h i s  posit ion,  about one-half the  l i f t  i n  c ru is ing  

f l i g h t  m u s t  be car r ied  on t h e  forward ducts which have a short  span. 

cha rac t e r i s t i c  of supporting one-half the l i f t  on a shor t  span r e s u l t s  i n  a low 

ove ra l l  span e f f ic iency  f ac to r  f o r  t he  a i r c r a f t  - the value f o r  the  representa- 

t i v e  configuration shown i n  f igure  18 being 0.63 as compared w i t h  values of 

about 0.80 for conventional a i r c r a f t  configurations.  

induced drag i s  a d i r e c t  cause of lower c ru i se  f l i g h t  eff ic iency.  

f igure  18 were taken from reference 17. 

For such tandem configura- 

This 

This higher-than-normal 

The da ta  of 

Another cause of low ef f ic iency  i n  c ru is ing  f l i g h t  i s  tha t  the  e f f ic iency  

of ducted propellers i s  inherent ly  lower than t h a t  of conventional f r e e  pro- 

pellers because the drag of t he  ducts and center-body support s t r u t s  i s  higher 

than the drag of a wing t o  produce t h e  same l i f t .  

charged t o  the propulsive e f f ic iency  of t h e  ducted propel le r  t h e  s i t u a t i o n  i s  

about t ha t  shown i n  f igu re  19. 

would have an eff ic iency of about 90 percent, even though it i s  somewhat over- 

s ized  t o  produce the  l i f t  required f o r  VTOL operation. 

results from the  otherwise unneeded surfaces of t h e  duct and s t r u t s ,  however, 

corresponds t o  a reduction i n  propulsive e f f ic iency  of about 15 percent .  The 

If t h i s  e x t r a  drag i s  

This f igure ind ica tes  tha t  t h e  propel le r  i t se l f  

The e x t r a  drag which 

- 16 - 



resul tant  effect ive propulsive efficiency of the ducted propeller f o r  a VTOL 

a i r c r a f t  i s  probably no higher than about 75 percent as compared with a value 

of about 85 percent f o r  a f r ee  propeller that  would produce the  same s t a t i c  

t h rus t  with the same horsepower. 
I 

Stab i l i t y  

One addi t ional  problem caused by ducted propellers i n  cruise  f l i g h t ,  as 

i l l u s t r a t e d  i n  f igure  20, i s  t h a t  the  ducts, because of t h e i r  v e r t i c a l  l i f t i n g  

surfaces, cause an unusually high l a t e r a l  force as a r e s u l t  of s ides l ip .  

f ac t  fo r  the representative configurations shown i n  f igure  20, the slope of the  

l a t e r a l  force versus s ides l ip  curve i s  about l/3 the slope of the l i f t  curve as 

compared with a value of about 1/20 of the  slope of the l i f t  curve f o r  a con- 

ventional airplane.  

r e f .  17.)  

f igurat ion means that the  a i r c r a f t  would experience l a t e r a l  accelerations due 

t o  s ide gusts about one-half as great as the normal accelerations due t o  

v e r t i c a l  gusts. Because of the lower tolerance of the  p i l o t  t o  l a t e r a l  accel-  

e ra t ion  t h i s  charac te r i s t ic  would be expected t o  make the r iding charac te r i s t ics  

of such an a i r c r a f t  seem very rough i n  gusty s ide winds. 

In 

(The data fo r  the ducted fan configuration were taken f r m  

The high value of the  lateral force parameter of the ducted fan con- 

I CONCLUDING REMARKS 

A number of d i f fe ren t  points have been brought out i n  t h i s  paper, but , 
I probably t h e  most s ign i f icant  ones are:  

1. The effects  of a hovering fan-powered V/STOL a i r c r a f t  on things on the  i 
ground, and the r e l a t ed  dust and debris problems, have not been nearly as 

severe as  had been widely supposed on the basis  of the slipstream velocity.  
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Such an a i r c r a f t  has operated from many d i f fe ren t  unprepared areas  with no more 

disturbance and no grea te r  problems than a hel icopter  of equal gross weight. 

2. A fan-powered l i f t  system i n  the  t r ans i t i on  speed range influences t h e  

surrounding air i n  t h e  same manner as any other l i f t i n g  system and i t s  general  

e f f ec t s  can consequently be an t ic ipa ted  on the basis of conventional aerodynamic 

considerations. 

powered lift system should be spread as  uniformly and as f a r  spanwise as 

possible  f o r  e f f i c i e n t  fli@;ht i n  the t r a n s i t i o n  speed range, and t h a t  the l i f t  

induced by the  fans i s  grea te r  when t h e i r  e f f lux  i s  d i rec ted  downward at  a more 

rearward chordwise s t a t ion .  

Two of the most impoqtant of these considerations a r e  t h a t  the  
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A 

b 

D 

De 

TS 

V 

W 

a 

P 

tl 

CD 

CL 

wing aspect r a t i o  

wing span, f t  

wing mean aerodynamic chord, f t  

drag, lb; o r  fan diameter, f t  

f a n  e f f e z t i m  diameter, diameter of a s ingle  fan having the same area  

as the t o t a l  area of a l l  fans of a configuration 

CL2/CD span eff ic iency factor,  
JtA 

l i f t ,  l b  

fan  mass flow, slugs/sec 

pitching moment, ft-lb 

free-stream dynamic pressure, l b / f t2  

wing area, f t 2  

ducted fan gross thrust ,  lb T = mV 

ducted fan s t a t i c  thrust ,  lb 

free-stream velocity, f t / sec  except where otherwise noted 

ducted fan  exhaust velocity, f t / sec  

a i r c r a f t  weight, l b  

angle of attack, deg 

def lect ion of louvers, deg (see f i g .  12)  

propulsive efficiency. 

D drag coeff ic ient ,  - 
qs 

4 ( 

L l i f t  coeff ic ient ,  - 
qs 
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yawing-moment coefficient, Yawing moment 
qSb CIl 

Lateral force lateral-force coefficient, 
CY qs 

pressure coefficient cP 

lift-curve slope cLa 
acn directional stability parameter, - 
aP 

ac, lateral force stability parameter, - 
yP aP C 
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